

data-diff

Data-diff is a command-line tool and Python library to efficiently diff
rows across two different databases.

⇄ Verifies across many different databases (e.g. PostgreSQL -> Snowflake) !

🔍 Outputs diff of rows in detail

🚨 Simple CLI/API to create monitoring and alerts

🔥 Verify 25M+ rows in <10s, and 1B+ rows in ~5min.

♾️ Works for tables with 10s of billions of rows

For more information, See our README [https://github.com/datafold/data-diff#readme]

Resources

	Source code (git): https://github.com/datafold/data-diff

	Python API Reference

	The rest of the documentation [https://docs.datafold.com/os_diff/about/]

Python API Reference

	
data_diff.connect(db_conf: Union[str, dict], thread_count: Optional[int] = 1, shared: bool = True) → Database

	Provides methods for connecting to a supported database using a URL or connection dict.

Ensures all sessions use UTC Timezone, if possible.

	
data_diff.connect_to_table(db_info: Union[str, dict], table_name: Union[Tuple[str, ...], str], key_columns: str = ('id',), thread_count: Optional[int] = 1, **kwargs) → TableSegment

	Connects to the given database, and creates a TableSegment instance

	Parameters

	
	db_info – Either a URI string, or a dict of connection options.

	table_name – Name of the table as a string, or a tuple that signifies the path.

	key_columns – Names of the key columns

	thread_count – Number of threads for this connection (only if using a threadpooled db implementation)

See also

connect()

	
data_diff.diff_tables(table1: TableSegment, table2: TableSegment, *, key_columns: Optional[Sequence[str]] = None, update_column: Optional[str] = None, extra_columns: Optional[Tuple[str, ...]] = None, min_key: Optional[Union[int, str, bytes, ArithUUID, ArithAlphanumeric]] = None, max_key: Optional[Union[int, str, bytes, ArithUUID, ArithAlphanumeric]] = None, min_update: Optional[datetime] = None, max_update: Optional[datetime] = None, algorithm: Algorithm = Algorithm.HASHDIFF, bisection_factor: int = 32, bisection_threshold: int = 16384, threaded: bool = True, max_threadpool_size: Optional[int] = 1) → Iterator

	Finds the diff between table1 and table2.

	Parameters

	
	key_columns (Tuple[str, ...]) – Name of the key column, which uniquely identifies each row (usually id)

	update_column (str, optional) – Name of updated column, which signals that rows changed.
Usually updated_at or last_update. Used by min_update and max_update.

	extra_columns (Tuple[str, ...], optional) – Extra columns to compare

	min_key (DbKey, optional) – Lowest key value, used to restrict the segment

	max_key (DbKey, optional) – Highest key value, used to restrict the segment

	min_update (DbTime, optional) – Lowest update_column value, used to restrict the segment

	max_update (DbTime, optional) – Highest update_column value, used to restrict the segment

	algorithm (Algorithm) – Which diffing algorithm to use (HASHDIFF or JOINDIFF)

	bisection_factor (int) – Into how many segments to bisect per iteration. (Used when algorithm is HASHDIFF)

	bisection_threshold (Number) – Minimal row count of segment to bisect, otherwise download
and compare locally. (Used when algorithm is HASHDIFF).

	threaded (bool) – Enable/disable threaded diffing. Needed to take advantage of database threads.

	max_threadpool_size (int) – Maximum size of each threadpool. None means auto.
Only relevant when threaded is True.
There may be many pools, so number of actual threads can be a lot higher.

Note

The following parameters are used to override the corresponding attributes of the given TableSegment instances:
key_columns, update_column, extra_columns, min_key, max_key.
If different values are needed per table, it’s possible to omit them here, and instead set
them directly when creating each TableSegment.

Example

>>> table1 = connect_to_table('postgresql:///', 'Rating', 'id')
>>> list(diff_tables(table1, table1))
[]

See also

TableSegment
HashDiffer
JoinDiffer

	
class data_diff.HashDiffer(threaded: bool = True, max_threadpool_size: (int+NoneType) = 1, bisection_factor: int = 32, bisection_threshold: Number = 16384, stats: dict[(Any*Any)] = <factory>)

	Finds the diff between two SQL tables

The algorithm uses hashing to quickly check if the tables are different, and then applies a
bisection search recursively to find the differences efficiently.

Works best for comparing tables that are mostly the same, with minor discrepencies.

	Parameters

	
	bisection_factor (int) – Into how many segments to bisect per iteration.

	bisection_threshold (Number) – When should we stop bisecting and compare locally (in row count).

	threaded (bool) – Enable/disable threaded diffing. Needed to take advantage of database threads.

	max_threadpool_size (int) – Maximum size of each threadpool. None means auto.
Only relevant when threaded is True.
There may be many pools, so number of actual threads can be a lot higher.

	
__init__(threaded: bool = True, max_threadpool_size: (int+NoneType) = 1, bisection_factor: int = 32, bisection_threshold: Number = 16384, stats: dict[(Any*Any)] = <factory>) → None

	

	
diff_tables(table1: TableSegment, table2: TableSegment, info_tree: Optional[InfoTree] = None) → DiffResultWrapper

	Diff the given tables.

	Parameters

	
	table1 (TableSegment) – The “before” table to compare. Or: source table

	table2 (TableSegment) – The “after” table to compare. Or: target table

	Returns

	An iterator that yield pair-tuples, representing the diff. Items can be either -
(‘-’, row) for items in table1 but not in table2.
(‘+’, row) for items in table2 but not in table1.
Where row is a tuple of values, corresponding to the diffed columns.

	
class data_diff.JoinDiffer(threaded: bool = True, max_threadpool_size: (int+NoneType) = 1, validate_unique_key: bool = True, sample_exclusive_rows: bool = True, materialize_to_table: (tuple[str]+NoneType) = None, materialize_all_rows: bool = False, table_write_limit: int = 1000, stats: dict[(Any*Any)] = <factory>)

	Finds the diff between two SQL tables in the same database, using JOINs.

The algorithm uses an OUTER JOIN (or equivalent) with extra checks and statistics.
The two tables must reside in the same database, and their primary keys must be unique and not null.

All parameters are optional.

	Parameters

	
	threaded (bool) – Enable/disable threaded diffing. Needed to take advantage of database threads.

	max_threadpool_size (int) – Maximum size of each threadpool. None means auto.
Only relevant when threaded is True.
There may be many pools, so number of actual threads can be a lot higher.

	validate_unique_key (bool) – Enable/disable validating that the key columns are unique.
Single query, and can’t be threaded, so it’s very slow on non-cloud dbs.
Future versions will detect UNIQUE constraints in the schema.

	sample_exclusive_rows (bool) – Enable/disable sampling of exclusive rows. Creates a temporary table.

	materialize_to_table (DbPath, optional) – Path of new table to write diff results to. Disabled if not provided.

	table_write_limit (int) – Maximum number of rows to write when materializing, per thread.

	
__init__(threaded: bool = True, max_threadpool_size: (int+NoneType) = 1, validate_unique_key: bool = True, sample_exclusive_rows: bool = True, materialize_to_table: (tuple[str]+NoneType) = None, materialize_all_rows: bool = False, table_write_limit: int = 1000, stats: dict[(Any*Any)] = <factory>) → None

	

	
diff_tables(table1: TableSegment, table2: TableSegment, info_tree: Optional[InfoTree] = None) → DiffResultWrapper

	Diff the given tables.

	Parameters

	
	table1 (TableSegment) – The “before” table to compare. Or: source table

	table2 (TableSegment) – The “after” table to compare. Or: target table

	Returns

	An iterator that yield pair-tuples, representing the diff. Items can be either -
(‘-’, row) for items in table1 but not in table2.
(‘+’, row) for items in table2 but not in table1.
Where row is a tuple of values, corresponding to the diffed columns.

	
class data_diff.TableSegment(database: Database = <object object>, table_path: tuple[str] = <object object>, key_columns: tuple[str] = <object object>, update_column: (NoneType+str) = None, extra_columns: tuple[str] = (), min_key: (NoneType+(ArithAlphanumeric+bytes+str+int+ArithUUID)) = None, max_key: (NoneType+(ArithAlphanumeric+bytes+str+int+ArithUUID)) = None, min_update: (datetime+NoneType) = None, max_update: (datetime+NoneType) = None, where: (NoneType+str) = None, case_sensitive: bool = True, _schema: (CaseAwareMapping+NoneType) = None)

	Signifies a segment of rows (and selected columns) within a table

	Parameters

	
	database (Database) – Database instance. See connect()

	table_path (DbPath) – Path to table in form of a tuple. e.g. (‘my_dataset’, ‘table_name’)

	key_columns (Tuple[str]) – Name of the key column, which uniquely identifies each row (usually id)

	update_column (str, optional) – Name of updated column, which signals that rows changed.
Usually updated_at or last_update. Used by min_update and max_update.

	extra_columns (Tuple[str, ...], optional) – Extra columns to compare

	min_key (DbKey, optional) – Lowest key value, used to restrict the segment

	max_key (DbKey, optional) – Highest key value, used to restrict the segment

	min_update (DbTime, optional) – Lowest update_column value, used to restrict the segment

	max_update (DbTime, optional) – Highest update_column value, used to restrict the segment

	where (str, optional) – An additional ‘where’ expression to restrict the search space.

	case_sensitive (bool) – If false, the case of column names will adjust according to the schema. Default is true.

	
with_schema() → TableSegment

	Queries the table schema from the database, and returns a new instance of TableSegment, with a schema.

	
get_values() → list

	Download all the relevant values of the segment from the database

	
choose_checkpoints(count: int) → List[Union[int, str, bytes, ArithUUID, ArithAlphanumeric]]

	Suggests a bunch of evenly-spaced checkpoints to split by (not including start, end)

	
segment_by_checkpoints(checkpoints: List[Union[int, str, bytes, ArithUUID, ArithAlphanumeric]]) → List[TableSegment]

	Split the current TableSegment to a bunch of smaller ones, separated by the given checkpoints

	
new(**kwargs) → TableSegment

	Using new() creates a copy of the instance using ‘replace()’

	
count() → int

	Count how many rows are in the segment, in one pass.

	
count_and_checksum() → Tuple[int, int]

	Count and checksum the rows in the segment, in one pass.

	
__init__(database: Database = <object object>, table_path: tuple[str] = <object object>, key_columns: tuple[str] = <object object>, update_column: (NoneType+str) = None, extra_columns: tuple[str] = (), min_key: (NoneType+(ArithAlphanumeric+bytes+str+int+ArithUUID)) = None, max_key: (NoneType+(ArithAlphanumeric+bytes+str+int+ArithUUID)) = None, min_update: (datetime+NoneType) = None, max_update: (datetime+NoneType) = None, where: (NoneType+str) = None, case_sensitive: bool = True, _schema: (CaseAwareMapping+NoneType) = None) → None

	

	
data_diff.DbKey

	The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’.
There are two kind of these aliases: user defined and special. The special ones
are wrappers around builtin collections and ABCs in collections.abc. These must
have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated,
this is used by e.g. typing.List and typing.Dict.

alias of Union[int, str, bytes, ArithUUID, ArithAlphanumeric]

	
data_diff.DbTime = <class 'datetime.datetime'>

	datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])

The year, month and day arguments are required. tzinfo may be None, or an
instance of a tzinfo subclass. The remaining arguments may be ints.

	
data_diff.DbPath

	The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’.
There are two kind of these aliases: user defined and special. The special ones
are wrappers around builtin collections and ABCs in collections.abc. These must
have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated,
this is used by e.g. typing.List and typing.Dict.

alias of Tuple[str, …]

	
enum data_diff.Algorithm(value)

	An enumeration.

Valid values are as follows:

	
AUTO = <Algorithm.AUTO: 'auto'>

	

	
JOINDIFF = <Algorithm.JOINDIFF: 'joindiff'>

	

	
HASHDIFF = <Algorithm.HASHDIFF: 'hashdiff'>

	

 Python Module Index

 d

 		 	

 		
 d	

 	
 	
 data_diff	

Index

 _
 | A
 | C
 | D
 | G
 | H
 | J
 | M
 | N
 | S
 | T
 | W

_

 	
 	__init__() (data_diff.HashDiffer method)

 	(data_diff.JoinDiffer method)

 	(data_diff.TableSegment method)

A

 	
 	AUTO (data_diff.Algorithm attribute)

C

 	
 	choose_checkpoints() (data_diff.TableSegment method)

 	connect() (in module data_diff)

 	
 	connect_to_table() (in module data_diff)

 	count() (data_diff.TableSegment method)

 	count_and_checksum() (data_diff.TableSegment method)

D

 	
 	
 data_diff

 	module

 	DbKey (in module data_diff)

 	DbPath (in module data_diff)

 	
 	DbTime (in module data_diff)

 	diff_tables() (data_diff.HashDiffer method)

 	(data_diff.JoinDiffer method)

 	(in module data_diff)

G

 	
 	get_values() (data_diff.TableSegment method)

H

 	
 	HASHDIFF (data_diff.Algorithm attribute)

 	
 	HashDiffer (class in data_diff)

J

 	
 	JOINDIFF (data_diff.Algorithm attribute)

 	
 	JoinDiffer (class in data_diff)

M

 	
 	
 module

 	data_diff

N

 	
 	new() (data_diff.TableSegment method)

S

 	
 	segment_by_checkpoints() (data_diff.TableSegment method)

T

 	
 	TableSegment (class in data_diff)

W

 	
 	with_schema() (data_diff.TableSegment method)

How to use

How to use from the shell (or: command-line)

Run the following command:

 # Same-DB diff, using outer join
 $ data-diff DB TABLE1 TABLE2 [options]

 # Cross-DB diff, using hashes
 $ data-diff DB1 TABLE1 DB2 TABLE2 [options]

Where DB is either a database URL that’s compatible with SQLAlchemy, or the name of a database specified in a configuration file.

We recommend using a configuration file, with the --conf switch, to keep the command simple and managable.

For a list of example URLs, see list of supported databases.

Note: Because URLs allow many special characters, and may collide with the syntax of your command-line,
it’s recommended to surround them with quotes.

Options

	--help - Show help message and exit.

	-k or --key-columns - Name of the primary key column. If none provided, default is ‘id’.

	-t or --update-column - Name of updated_at/last_updated column

	-c or --columns - Names of extra columns to compare. Can be used more than once in the same command.
Accepts a name or a pattern like in SQL.
Example: -c col% -c another_col -c %foorb.r%

	-l or --limit - Maximum number of differences to find (limits maximum bandwidth and runtime)

	-s or --stats - Print stats instead of a detailed diff

	-d or --debug - Print debug info

	-v or --verbose - Print extra info

	-i or --interactive - Confirm queries, implies --debug

	--json - Print JSONL output for machine readability

	--min-age - Considers only rows older than specified. Useful for specifying replication lag.
Example: --min-age=5min ignores rows from the last 5 minutes.
Valid units: d, days, h, hours, min, minutes, mon, months, s, seconds, w, weeks, y, years

	--max-age - Considers only rows younger than specified. See --min-age.

	-j or --threads - Number of worker threads to use per database. Default=1.

	-w, --where - An additional ‘where’ expression to restrict the search space.

	--conf, --run - Specify the run and configuration from a TOML file. (see below)

	--no-tracking - data-diff sends home anonymous usage data. Use this to disable it.

The following two options are not available when using the pre release In-DB feature:

	--bisection-threshold - Minimal size of segment to be split. Smaller segments will be downloaded and compared locally.

	--bisection-factor - Segments per iteration. When set to 2, it performs binary search.

In-DB commands, available in pre release only:

	-m, --materialize - Materialize the diff results into a new table in the database.
If a table exists by that name, it will be replaced.
Use %t in the name to place a timestamp.
Example: -m test_mat_%t

	--assume-unique-key - Skip validating the uniqueness of the key column during joindiff, which is costly in non-cloud dbs.

	--sample-exclusive-rows - Sample several rows that only appear in one of the tables, but not the other. Use with -s.

	--materialize-all-rows - Materialize every row, even if they are the same, instead of just the differing rows.

	--table-write-limit - Maximum number of rows to write when creating materialized or sample tables, per thread. Default=1000.

	-a, --algorithm [auto|joindiff|hashdiff] - Force algorithm choice

How to use with a configuration file

Data-diff lets you load the configuration for a run from a TOML file.

Reasons to use a configuration file:

	Convenience: Set-up the parameters for diffs that need to run often

	Easier and more readable: You can define the database connection settings as config values, instead of in a URI.

	Gives you fine-grained control over the settings switches, without requiring any Python code.

Use --conf to specify that path to the configuration file. data-diff will load the settings from run.default, if it’s defined.

Then you can, optionally, use --run to choose to load the settings of a specific run, and override the settings run.default. (all runs extend run.default, like inheritance).

Finally, CLI switches have the final say, and will override the settings defined by the configuration file, and the current run.

Example TOML file:

Specify the connection params to the test database.
[database.test_postgresql]
driver = "postgresql"
user = "postgres"
password = "Password1"

Specify the default run params
[run.default]
update_column = "timestamp"
verbose = true

Specify params for a run 'test_diff'.
[run.test_diff]
verbose = false
Source 1 ("left")
1.database = "test_postgresql" # Use options from database.test_postgresql
1.table = "rating"
Source 2 ("right")
2.database = "postgresql://postgres:Password1@/" # Use URI like in the CLI
2.table = "rating_del1"

In this example, running data-diff --conf myconfig.toml --run test_diff will compare between rating and rating_del1.
It will use the timestamp column as the update column, as specified in run.default. However, it won’t be verbose, since that
flag is overwritten to false.

Running it with data-diff --conf myconfig.toml --run test_diff -v will set verbose back to true.

How to use from Python

Import the data_diff module, and use the following functions:

	connect_to_table() to connect to a specific table in the database

	diff_tables() to diff those tables

Example:

Optional: Set logging to display the progress of the diff
import logging
logging.basicConfig(level=logging.INFO)

from data_diff import connect_to_table, diff_tables

table1 = connect_to_table("postgresql:///", "table_name", "id")
table2 = connect_to_table("mysql:///", "table_name", "id")

for different_row in diff_tables(table1, table2):
 plus_or_minus, columns = different_row
 print(plus_or_minus, columns)

Run help(diff_tables) or read the docs [https://data-diff.readthedocs.io/en/latest/] to learn about the different options.

Usage Analytics & Data Privacy

data-diff collects anonymous usage data to help our team improve the tool and to apply development efforts to where our users need them most.

We capture two events: one when the data-diff run starts, and one when it is finished. No user data or potentially sensitive information is or ever will be collected. The captured data is limited to:

	Operating System and Python version

	Types of databases used (postgresql, mysql, etc.)

	Sizes of tables diffed, run time, and diff row count (numbers only)

	Error message, if any, truncated to the first 20 characters.

	A persistent UUID to indentify the session, stored in ~/.datadiff.toml

If you do not wish to participate, the tracking can be easily disabled with one of the following methods:

	In the CLI, use the --no-tracking flag.

	In the config file, set no_tracking = true (for example, under [run.default])

	If you’re using the Python API:

import data_diff
data_diff.disable_tracking() # Call this first, before making any API calls
Connect and diff your tables without any tracking

How to implement a new database driver for data-diff

First, read through the CONTRIBUTING.md [https://github.com/datafold/data-diff/blob/master/CONTRIBUTING.md] document.

Make sure data-diff is set up for development, and that all the tests pass (try to at least set it up for mysql and postgresql)

Look at the other database drivers for example and inspiration.

1. Add dependencies to pyproject.toml

Most new drivers will require a 3rd party library in order to connect to the database.

These dependencies should be specified in the pyproject.toml file, in [tool.poetry.extras]. Example:

[tool.poetry.extras]
postgresql = ["psycopg2"]

Then, users can install the dependencies needed for your database driver, with pip install 'data-diff[postgresql].

This way, data-diff can support a wide variety of drivers, without requiring our users to install libraries that they won’t use.

2. Implement a database module

New database modules belong in the data_diff/databases directory.

The module consists of:
1. Dialect (Class responsible for normalizing/casting fields. e.g. Numbers/Timestamps)
2. Database class that handles connecting to the DB, querying (if the default doesn’t work) , closing connectiosn and etc.

Choosing a base class, based on threading Model

You can choose to inherit from either base.Database or base.ThreadedDatabase.

Usually, databases with cursor-based connections, like MySQL or Postgresql, only allow connections to be used by the thread that created them. In order to support multithreading, we implement them by inheriting from ThreadedDatabase, which holds a pool of worker threads, and creates a new connection per thread.

Usually, cloud databases, such as Snowflake and BigQuery, open a new connection per request, and support simultaneous queries from any number of threads. In other words, they already support multithreading, so we can implement them by inheriting directly from Database.

Import on demand

Database drivers should not import any 3rd party library at the module level.

Instead, they should be imported and initialized within a function. Example:

from .base import import_helper

@import_helper("postgresql")
def import_postgresql():
 import psycopg2
 import psycopg2.extras

 psycopg2.extensions.set_wait_callback(psycopg2.extras.wait_select)
 return psycopg2

We use the import_helper() decorator to provide a uniform and informative error. The string argument should be the name of the package, as written in pyproject.toml.

_query()

All queries to the database pass through _query(). It takes SQL code, and returns a list of rows. Here is its signature:

def _query(self, sql_code: str) -> list: ...

For standard cursor connections, it’s sufficient to implement it with a call to base._query_conn(), like:

	::
	return _query_conn(self._conn, sql_code)

select_table_schema() / query_table_schema()

If your database does not have a information_schema.columns table, or if its structure is unusual, you may have to implement your own select_table_schema() function, which returns the query needed to return column information in the form of a list of tuples, where each tuple is column_name, data_type, datetime_precision, numeric_precision, numeric_scale.

If such a query isn’t possible, you may have to implement query_table_schema() yourself, which extracts this information from the database, and returns it in the proper form.

If the information returned from query_table_schema() requires slow or error-prone post-processing, you may delay that post-processing by overriding _process_table_schema() and implementing it there. The method _process_table_schema() only gets called for the columns that will be diffed.

Documentation:

	data_diff.databases.database_types.AbstractDatabase.select_table_schema()

	data_diff.databases.database_types.AbstractDatabase.query_table_schema()

TYPE_CLASSES

Each database class must have a TYPE_CLASSES dictionary, which maps between the string data-type, as returned by querying the table schema, into the appropriate data-diff type class, i.e. a subclass of database_types.ColType.

ROUNDS_ON_PREC_LOSS

When providing a datetime or a timestamp to a database, the database may lower its precision to correspond with the target column type.

Some databases will lower precision of timestamp/datetime values by truncating them, and some by rounding them.

ROUNDS_ON_PREC_LOSS should be True if this database rounds, or False if it truncates.

__init__(), create_connection()

The options for the database connection will be given to the __init__() method as keywords.

If you inherit from Database, your __init__() method may create the database connection.

If you inherit from ThreadedDatabase, you should instead create the connection in the create_connection() method.

close()

If you inherit from Database, you will need to implement this method to close the connection yourself.

If you inherit from ThreadedDatabase, you don’t have to implement this method.

Docs:

	data_diff.databases.database_types.AbstractDatabase.close()

quote(), to_string(),

These methods are used when creating queries, to quote a value, or cast it to STRING/VARCHAR.

For more information, read their docs:

	data_diff.databases.database_types.AbstractDatabase.quote()

	data_diff.databases.database_types.AbstractDatabase.to_string()

normalize_number(), normalize_timestamp(), md5_to_int()

Because comparing data between 2 databases requires both the data to be in the same format - we have normalization functions.

Databases can have the same data in different formats, e.g. DECIMAL vs FLOAT vs VARCHAR, with different precisions.
DataDiff works by converting the values to VARCHAR and comparing it.
Your normalize_number/normalize_timestamp functions should account for differing precisions between columns.

These functions accept an SQL code fragment, and returns a new code fragment representing the appropriate computation.

parse_type()

This is used to determine types which the system cannot effectively detect.
Examples:
DECIMAL(10,3) needs to be parsed by a custom algorithm. You’d be using regex to split it into Field name + Width + Scale.

4. Debugging

You can enable debug logging for tests by setting the logger level to DEBUG, via the environment variable LOG_LEVEL, or the LOG_LEVEL variable in /tests/common.py.
This will display all the queries ran, and display the type detected for each column.

3. Add tests

Add your new database to the DATABASE_TYPES dict in tests/test_database_types.py

The key is the class itself, and the value is a dict of {category: [type1, type2, …]}

Categories supported are: int, datetime, float, and uuid.

Example:

DATABASE_TYPES = {
 ...
 db.PostgreSQL: {
 "int": ["int", "bigint"],
 "datetime": [
 "timestamp(6) without time zone",
 "timestamp(3) without time zone",
 "timestamp(0) without time zone",
 "timestamp with time zone",
],
 ...
 },

Then run the tests and make sure your database driver is being tested.

You can run the tests with unittest.

To save time, we recommend running them with unittest-parallel.

When debugging, we recommend using the -f flag, to stop on error. Also, use the -k flag to run only the individual test that you’re trying to fix.

4. Create Pull-Request

Open a pull-request on github, and we’ll take it from there!

List of supported databases

	Database
	Status
	Connection string

	PostgreSQL >=10
	💚
	postgresql://<user>:<password>@<host>:5432/<database>

	MySQL
	💚
	mysql://<user>:<password>@<hostname>:5432/<database>

	Snowflake
	💚
	"snowflake://<user>[:<password>]@<account>/<database>/<SCHEMA>?warehouse=<WAREHOUSE>&role=<role>[&authenticator=externalbrowser]"

	BigQuery
	💚
	bigquery://<project>/<dataset>

	Redshift
	💚
	redshift://<username>:<password>@<hostname>:5439/<database>

	Oracle
	💛
	oracle://<username>:<password>@<hostname>/database

	Presto
	💛
	presto://<username>:<password>@<hostname>:8080/<database>

	Databricks
	💛
	databricks://<http_path>:<access_token>@<server_hostname>/<catalog>/<schema>

	Trino
	💛
	trino://<username>:<password>@<hostname>:8080/<database>

	Clickhouse
	💛
	clickhouse://<username>:<password>@<hostname>:9000/<database>

	Vertica
	💛
	vertica://<username>:<password>@<hostname>:5433/<database>

	DuckDB
	💛
	

	ElasticSearch
	📝
	

	Planetscale
	📝
	

	Pinot
	📝
	

	Druid
	📝
	

	Kafka
	📝
	

	SQLite
	📝
	

	💚: Implemented and thoroughly tested.

	💛: Implemented, but not thoroughly tested yet.

	⏳: Implementation in progress.

	📝: Implementation planned. Contributions welcome.

Is your database not listed here? We accept pull-requests!

Technical explanation

data-diff can diff tables within the same database, or across different databases.

Same-DB Diff:

	Uses an outer-join to diff the rows as efficiently and accurately as possible.

	Supports materializing the diff results to a database table.

	Can also collect various extra statistics about the tables.

Cross-DB Diff: Employs a divide and conquer algorithm based on hashing, optimized for few changes.

The following is a technical explanation of the cross-db diff.

Overview

data-diff splits the table into smaller segments, then checksums each segment in both databases. When the checksums for a segment aren’t equal, it will further divide that segment into yet smaller segments, checksumming those until it gets to the differing row(s).

This approach has performance within an order of magnitude of count(*) when there are few/no changes, but is able to output each differing row! By pushing the compute into the databases, it’s much faster than querying for and comparing every row.

[image: _images/f8656187577008bce543578091b4e988bd69ddb7.png]Performance for 100M rows

†: The implementation for downloading all rows that data-diff and
count(*) is compared to is not optimal. It is a single Python multi-threaded
process. The performance is fairly driver-specific, e.g. PostgreSQL’s performs 10x
better than MySQL.

Deep Dive

In this section we’ll be doing a walk-through of exactly how data-diff
works, and how to tune --bisection-factor and --bisection-threshold.

Let’s consider a scenario with an orders table with 1M rows. Fivetran is
replicating it contionously from PostgreSQL to Snowflake:

┌─────────────┐ ┌─────────────┐
│ PostgreSQL │ │ Snowflake │
├─────────────┤ ├─────────────┤
│ │ │ │
│ │ │ │
│ │ ┌─────────────┐ │ table with │
│ table with ├──┤ replication ├──────▶│ ?maybe? all │
│lots of rows!│ └─────────────┘ │ the same │
│ │ │ rows. │
│ │ │ │
│ │ │ │
│ │ │ │
└─────────────┘ └─────────────┘

In order to check whether the two tables are the same, data-diff splits
the table into --bisection-factor=10 segments.

We also have to choose which columns we want to checksum. In our case, we care
about the primary key, --key-column=id and the update column
--update-column=updated_at. updated_at is updated every time the row is, and
we have an index on it.

data-diff starts by querying both databases for the min(id) and max(id)
of the table. Then it splits the table into --bisection-factor=10 segments of
1M/10 = 100K keys each:

┌──────────────────────┐ ┌──────────────────────┐
│ PostgreSQL │ │ Snowflake │
├──────────────────────┤ ├──────────────────────┤
│ id=1..100k │ │ id=1..100k │
├──────────────────────┤ ├──────────────────────┤
│ id=100k..200k │ │ id=100k..200k │
├──────────────────────┤ ├──────────────────────┤
│ id=200k..300k ├─────────────▶│ id=200k..300k │
├──────────────────────┤ ├──────────────────────┤
│ id=300k..400k │ │ id=300k..400k │
├──────────────────────┤ ├──────────────────────┤
│ ... │ │ ... │
├──────────────────────┤ ├──────────────────────┤
│ 900k..100k │ │ 900k..100k │
└───────────────────▲──┘ └▲─────────────────────┘
 ┃ ┃
 ┃ ┃
 ┃ checksum queries ┃
 ┃ ┃
 ┌─┻──────────────────┻────┐
 │ data-diff │
 └─────────────────────────┘

Now data-diff will start running --threads=1 queries in parallel that
checksum each segment. The queries for checksumming each segment will look
something like this, depending on the database:

SELECT count(*),
 sum(cast(conv(substring(md5(concat(cast(id as char), cast(timestamp as char))), 18), 16, 10) as unsigned))
FROM `rating_del1`
WHERE (id >= 1) AND (id < 100000)

This keeps the amount of data that has to be transferred between the databases
to a minimum, making it very performant! Additionally, if you have an index on
updated_at (highly recommended), then the query will be fast, as the database
only has to do a partial index scan between id=1..100k.

If you are not sure whether the queries are using an index, you can run it with
--interactive. This puts data-diff in interactive mode, where it shows an
EXPLAIN before executing each query, requiring confirmation to proceed.

After running the checksum queries on both sides, we see that all segments
are the same except id=100k..200k:

┌──────────────────────┐ ┌──────────────────────┐
│ PostgreSQL │ │ Snowflake │
├──────────────────────┤ ├──────────────────────┤
│ checksum=0102 │ │ checksum=0102 │
├──────────────────────┤ mismatch! ├──────────────────────┤
│ checksum=ffff ◀──────────────▶ checksum=aaab │
├──────────────────────┤ ├──────────────────────┤
│ checksum=abab │ │ checksum=abab │
├──────────────────────┤ ├──────────────────────┤
│ checksum=f0f0 │ │ checksum=f0f0 │
├──────────────────────┤ ├──────────────────────┤
│ ... │ │ ... │
├──────────────────────┤ ├──────────────────────┤
│ checksum=9494 │ │ checksum=9494 │
└──────────────────────┘ └──────────────────────┘

Now data-diff will do exactly as it just did for the whole table for only
this segment: Split it into --bisection-factor segments.

However, this time, because each segment has 100k/10=10k entries, which is
less than the --bisection-threshold, it will pull down every row in the segment
and compare them in memory in data-diff.

┌──────────────────────┐ ┌──────────────────────┐
│ PostgreSQL │ │ Snowflake │
├──────────────────────┤ ├──────────────────────┤
│ id=100k..110k │ │ id=100k..110k │
├──────────────────────┤ ├──────────────────────┤
│ id=110k..120k │ │ id=110k..120k │
├──────────────────────┤ ├──────────────────────┤
│ id=120k..130k │ │ id=120k..130k │
├──────────────────────┤ ├──────────────────────┤
│ id=130k..140k │ │ id=130k..140k │
├──────────────────────┤ ├──────────────────────┤
│ ... │ │ ... │
├──────────────────────┤ ├──────────────────────┤
│ 190k..200k │ │ 190k..200k │
└──────────────────────┘ └──────────────────────┘

Finally data-diff will output the (id, updated_at) for each row that was different:

(122001, 1653672821)

If you pass --stats you’ll see stats such as the % of rows were different.

Performance Considerations

	Ensure that you have indexes on the columns you are comparing. Preferably a
compound index. You can run with --interactive to see an EXPLAIN for the
queries.

	Consider increasing the number of simultaneous threads executing
queries per database with --threads. For databases that limit concurrency
per query, such as PostgreSQL/MySQL, this can improve performance dramatically.

	If you are only interested in whether something changed, pass --limit 1.
This can be useful if changes are very rare. This is often faster than doing a
count(*), for the reason mentioned above.

	If the table is very large, consider a larger --bisection-factor. Otherwise, you may run into timeouts.

	If there are a lot of changes, consider a larger --bisection-threshold.

	If there are very large gaps in your key column (e.g., 10s of millions of
continuous rows missing), then data-diff may perform poorly, doing lots of
queries for ranges of rows that do not exist. We have ideas on how to tackle this issue, which we have yet to implement. If you’re experiencing this effect, please open an issue, and we
will prioritize it.

	The fewer columns you verify (passed with --columns), the faster
data-diff will be. On one extreme, you can verify every column; on the
other, you can verify only updated_at, if you trust it enough. You can also
only verify id if you’re interested in only presence, such as to detect
missing hard deletes. You can do also do a hybrid where you verify
updated_at and the most critical value, such as a money value in amount, but
not verify a large serialized column like json_settings.

	We have ideas for making data-diff even faster that
we haven’t implemented yet: faster checksums by reducing type-casts
and using a faster hash than MD5, dynamic adaptation of
bisection_factor/threads/bisection_threshold (especially with large key
gaps), and improvements to bypass Python/driver performance limitations when
comparing huge amounts of rows locally (i.e. for very high bisection_threshold values).

 nav.xhtml

 Table of Contents

 		
 data-diff

_static/plus.png

_static/file.png

_static/minus.png

_images/f8656187577008bce543578091b4e988bd69ddb7.png
Time

data-diff on 100M rows

1200

1000

800

600

400

200

B count()
B data-diff (checksum)
M Download and compare

